Distinctive Local Features for 3D Point Cloud and Mesh Representation

Yulan Guo (郭裕兰)
National University of Defense Technology
yulan.guo (AT) nudt.edu.cn
1. Introduction

2. 3D Keypoint Detectors

3. 3D Local Feature Descriptors

4. Our Contributions
 4.1 RoPS: A Distinctive and Robust Feature Descriptor for 3D Local Surface Representation
 4.2 ARS: An Efficient Feature Descriptor for 3D Face Representation

5. Conclusion
1. Introduction

2. 3D Keypoint Detectors

3. 3D Local Feature Descriptors

4. Our Contributions
 4.1 RoPS: A Distinctive and Robust Feature Descriptor for 3D Local Surface Representation
 4.2 ARS: An Efficient Feature Descriptor for 3D Face Representation

5. Conclusion
1.1 Point Cloud Acquisition

LiDAR

3D Scanners
Emerging 3D Cameras

More is coming....
1.2 Point Cloud Applications

- UAV & Robots
- Culture Heritage
- Remote Sensing & Mapping
- Multimedia & Biometrics
1.3 2D Images vs 3D Data

2D Images
- Grey Image / Coloured Image

3D Data
- Depth Image / Point Cloud / Mesh

<table>
<thead>
<tr>
<th></th>
<th>2D Images</th>
<th>3D Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale Changes</td>
<td>Sensitive</td>
<td>Invariant</td>
</tr>
<tr>
<td>Metric Space</td>
<td>Ambiguous</td>
<td>Unambiguous</td>
</tr>
<tr>
<td>Illumination Changes</td>
<td>Sensitive</td>
<td>Robust</td>
</tr>
<tr>
<td>Characteristics</td>
<td>Appearance</td>
<td>Shape</td>
</tr>
<tr>
<td>Data Structure</td>
<td>Structured</td>
<td>Unstructured (point cloud)</td>
</tr>
</tbody>
</table>
1.4 Representation of 3D Data

3D Data

- Depth Image
 - 2D image, projection on the imaging plane
- Point Cloud
 - unstructured 3D points, discrete sampling of a 3D surface
- Mesh
 - structured 3D points
 - vertices + faces
1.5 3D Local Feature Extraction

3D local feature extraction is a fundamental topic

- Keypoint Detection
- Local Feature Description
- Feature Correspondences / Classifiers
3D local feature extraction is a fundamental topic

- **Keypoint Detection**
 - Detect 3D points with rich information content (high saliency) from a point cloud/mesh, and determine the inherent scale of each keypoint.

Feature Description

- **Feature Correspondences**

Keypoint Detection

Feature Description

Feature Correspondences
3D local feature extraction is a fundamental topic

- **Local Feature Description**
 - Encode the information of a local surface (around a keypoint) with a feature vector
1.5 3D Local Feature Extraction

Challenges

- Different Viewpoints
- Occlusion
- Clutter
- Noise
- Outliers
- Varying Mesh Resolutions (Point Densities)
Outline

1. Introduction

2. 3D Keypoint Detectors

3. 3D Local Feature Descriptors

4. Our Contributions
 4.1 RoPS: A Distinctive and Robust Feature Descriptor for 3D Local Surface Representation
 4.2 ARS: An Efficient Feature Descriptor for 3D Face Representation

5. Conclusion
2.1 3D Keypoint Detector

The Task

- Detect 3D points with rich information content (high saliency) from a point cloud/mesh, and determine the inherent scale of each keypoint.

2.2 Taxonomy

Fixed-Scale Keypoint Detectors

- 3D Data
- Pruning
- Saliency-based NMS
- Fixed Scale
- Keypoints

Adaptive-Scale Keypoint Detectors

- 3D Data
- Embedding
- Scale-space
- Scale Selection
- Saliency-based NMS
- Pruning
- Adaptive Scale
- Keypoints with scale

2.3 Existing Work

- [Mokhtarian et al., IVC, 2001]
- [Yamany & Farag, TPAMI, 2002]
- [Pauly et al., CGF, 2003]
- [Li & Guskov, ESGP, 2005]
- [Gal & Cohen-Or, ACM TOG, 2006]
- [Matei et al., TPAMI, 2006]
- [Chen & Bhanu, TPAMI, 2007]
- [Akagunduz & Ulusoy, ICCV, 2007]
- [Novatnack & Nishino, ICCV, 2007]
- [Flint et al., IET-CV, 2008]
- [Castellani et al., CGF, 2008]
- [Hua et al., TVCG, 2008]
- [Zou et al., CAVW, 2008]
- [Unnikrishnan et al., CVPR, 2008]
- [Zhong, CVPRW, 2009]
- [Ho & Gibbins, IET-CV, 2009]
- [Hu & Hua, VC, 2009]
- [Sun et al., CGF, 2009]
- [Zaharescu et al., CVPR, 2009]
- [Zou et al., IEEE TVCG, 2009]
- [Hou & Qin, ECCV, 2010]
- [Knopp et al., ECCV, 2010]
- [Mian et al., IJCV, 2010]
- [Sipiran & Bustos, 2011]
- [Bariya et al., IJCV, 2012]
- [Zaharescu et al., IJCV, 2012]
- [Darom & Keller, IEEE TIP, 2012]
- [Tombari et al., IJCV, 2013]
- [Guo et al., TPAMI, 2014]
2.4 Intrinsic Shape Signatures (ISS)

- **Fixed-Scale**
 - Obtain three eigenvalues $\lambda_1, \lambda_2, \lambda_3$ by performing EVD on the scatter matrix of the points lying on a local surface

\[
\Sigma(p) = \frac{1}{N} \sum_{q \in N(p)} (q - \mu_p)(q - \mu_p)^T
\]

\[
\mu_p = \frac{1}{N} \sum_{q \in N(p)} q.
\]

- Prune points using

\[
\frac{\lambda_2(p)}{\lambda_1(p)} < Th_{12} \land \frac{\lambda_3(p)}{\lambda_2(p)} < Th_{23}
\]

- Define point saliency as

\[
\rho(p) = \lambda_3(p)
\]

2.5 KeyPoint Quality (KQS)

- **Fixed-Scale**
 - Rotate the local surface to align the point’s normal with the z-axis
 - Align the rotated local surface with its principal axes
 - Prune points using $\delta > t_1$, where
 $$\delta = \frac{\max(X) - \min(X)}{\max(Y) - \min(Y)}$$
 - Define keypoint quality as
 $$Q_k = \frac{1000}{n^2} \sum |K| + \max(100K) + |\min(100K)| + \max(10\kappa_1) + |\min(10\kappa_2)|.$$
 where κ_1, κ_2 and K are maximum, minimum, and Gaussian curvatures, respectively.
 - Detect keypoints by comparing Q_k to a threshold

2.6 MeshDOG

- **Adaptive-Scale**
 - (1) Scale Space Construction
 - Define a scalar field f (photometric or geometric attribute) for each point
 - The scale space is built by progressive convolutions over f

 \[
 F_0 = f \\
 F_t = F_{t-1} \ast G_{\sigma(t)} \\
 t = \{1, 2, \ldots, s \cdot c\}
 \]

 where, the number of octaves $s = 3$, scales in each octave $c = 6$, the standard deviation of the Gaussian
 \[
 \sigma(t) = 2^{c-2} \left[\frac{t}{c}\right] e_{avg}
 \]
 - Calculate the Difference of Gaussian (DOG)
 \[
 L_t = F_t - F_{t-1}
 \]

A. Zaharescu, E. Boyer, R. Horaud, Keypoints and local descriptors of scalar functions on 2D manifolds. IJCV, 100: 78–98, 2012
2.6 MeshDOG

- **Adaptive-Scale**
 - *(2) Keypoint Detection*
 - **S1**: Select keypoint candidates as the local extrema over one ring neighbourhoods in the current and the adjacent scales
 - **S2**: Consider the top 5% of the maximum number of vertices according to their sorted magnitudes
 - **S3**: Keep the keypoint candidates that exhibit strong corner characteristics using Hessian matrix

A. Zaharescu, E. Boyer, R. Horaud, Keypoints and local descriptors of scalar functions on 2D manifolds. IJCV, 100: 78–98, 2012
Outline

1. Introduction
2. 3D Keypoint Detectors
3. 3D Local Feature Descriptors
4. Our Contributions
 4.1 RoPS: A Distinctive and Robust Feature Descriptor for 3D Local Surface Representation
 4.2 ARS: An Efficient Feature Descriptor for 3D Face Representation
5. Conclusion
3.1 3D Local Feature Descriptors

The Task

- Encode the geometric information of a local surface (around a keypoint) with a feature vector
3.2 Taxonomy

3D Descriptors

- Signature based Descriptors
 - Spatial Distribution Histogram
- Histogram based Descriptors
 - Geometric Attribute Histogram
- Transform based Descriptors
 - Oriented Gradient Histogram

3.3 Existing Work

- [Stein & Medioni, TPAMI, 1992]
- [Chua & Jarvis, TPAMI, 1997]
- [Johnson & Hebert, TPAMI, 1999]
- [Sun & Abidi, ICCV, 2001]
- [Yamany & Farag, TPAMI, 2002]
- [Frome et al., ECCV, 2004]
- [Li & Guskov, ESGP, 2005]
- [Mian et al., TPAMI, 2006]
- [Chen & Bhanu, PAMI, 2007]
- [Malassiotis & Strintzis, TPAMI 2007]
- [Taati et al., ICCV 2007 & CVIU 2011]
- [Castellani et al., CFG, 2008]
- [Flint et al., IET-CV, 2008]
- [Hua et al., TVCG, 2008]
- [Novatnack & Nishino, ECCV, 2008]
- [Rusu et al., ICRA, 2009]
- [Hu & Hua, VC, 2009]

- [Masuda, CVIU, 2009]
- [Sun et al., CGF, 2009]
- [Zhong, ICCVW, 2009]
- [Zaharescu et al., CVPR, 2009]
- [Hou & Qin, ECCV, 2010]
- [Mian et al., IJCV, 2010]
- [Knopp et al., ECCV ,2010]
- [Tombari et al., ECCV, 2010]
- [Darom & Keller, TIP, 2012]
- [Kokkions et al., 2012]
- [Zaharescu et al., IJCV, 2012]
- [Bariya et al., IJCV, 2012]
- [Smeets et al., CVIU, 2013]
- [Guo et al. IJCV, 2013]
- [Tombari et al., CVIU, 2014]
- [Guo et al., TPAMI, 2014]
3.4 Spin Image

Spin Image Descriptor (PAMI 1999)

3.5 SHOT

SHOT Descriptor (ECCV 2010, CVIU 2014)

- Construct an LRF for a keypoint
- Divide the neighbourhood space into 3D volumes
- Generate a local histogram by accumulating the number of points according to the angles between the normal at the keypoint and these at the neighbouring points
- Concatenate local histograms to form SHOT descriptor

3.6 MeshHOG

MeshHOG Descriptor (IJCV 2012)

- Construct an LRF for a keypoint using the surface normal and tangent plane.
- Project the gradient vectors onto 3 planes associated with the LRF, and divide each plane into 4 polar slices.
- Obtain an 8-bin histogram for each polar slice using the orientations of the gradients.
- Generate the MeshHOG descriptor by concatenating all histograms.

A. Zaharescu, E. Boyer, R. Horaud, Keypoints and local descriptors of scalar functions on 2D manifolds. IJCV, 100: 78–98, 2012
Outline

1. Introduction
2. 3D Keypoint Detectors
3. 3D Local Feature Descriptors
4. Our Contributions
 4.1 RoPS: A Distinctive and Robust Feature Descriptor for 3D Local Surface Representation
 4.2 ARS: An Efficient Feature Descriptor for 3D Face Representation
5. Conclusion
4.1.1 Motivation

- **Motivation**
 - Most of the existing feature descriptors suffer from either low descriptiveness or weak robustness.
 - Many descriptors were extended from their 2D counterparts, they did not fully consider the intrinsic 3D information.
 - SIFT -> 2.5D SIFT, SI-SIFT, meshSIFT, SHOT
 - SURF -> 3D SURF
 - HOG -> MeshHOG

- **Our Goal**
 - Design a 3D local feature descriptor which is highly descriptive, robust, compact, and invariant to rigid transformations.
4.1.2 A Feature Description Framework

3D Local Feature Description Framework

- Pose Normalization
- Multi-view Information Representation
4.1.2 A Feature Description Framework

Multi-view Information Representation

- Viewpoint Setup
- Multi-view Information Generation
- Multi-view Feature Extraction
- Multi-view Feature Fusion
4.1.3 RoPS Feature Descriptor

Part 1 - Local Reference Frame Construction

- Coordinate Axis Construction

\[
\mathbf{C}_i = \frac{\int_0^1 \int_0^{1-s} (\mathbf{p}_i(s, t) - \mathbf{p})(\mathbf{p}_i(s, t) - \mathbf{p})^T \, dt \, ds}{\int_0^1 \int_0^{1-s} \, dt \, ds}
\]

\[
\mathbf{C}_i = \frac{1}{12} \sum_{j=1}^{3} \sum_{k=1}^{3} (\mathbf{p}_{ij} - \mathbf{p})(\mathbf{p}_{ik} - \mathbf{p})^T
\]

\[
+ \frac{1}{12} \sum_{j=1}^{3} (\mathbf{p}_{ij} - \mathbf{p})(\mathbf{p}_{ij} - \mathbf{p})^T.
\]

\[
\mathbf{C} = \sum_{i=1}^{N} w_{i1}w_{i2} \mathbf{C}_i
\]

\[
\mathbf{CV} = \mathbf{EV}
\]
4.1.3 RoPS Feature Descriptor

Part 1 - Local Reference Frame Construction

- Sign Disambiguation

\[\tilde{v}_1 = v_1 \cdot \text{sign}(h) \]

\[h = \sum_{i=1}^{N} w_{i1} w_{i2} \left(\int_{0}^{1} \int_{0}^{1-s} (p_i(s, t) - p) v_1 \, dt \, ds \right) \]

\[= \sum_{i=1}^{N} w_{i1} w_{i2} \left(\frac{1}{6} \sum_{j=1}^{3} (p_{ij} - p) v_1 \right). \]

\[\tilde{v}_3 = v_3 \cdot \text{sign} \left(\sum_{i=1}^{N} w_{i1} w_{i2} \left(\frac{1}{6} \sum_{j=1}^{3} (p_{ij} - p) v_3 \right) \right) \]
4.1.3 RoPS Feature Descriptor

3D Local Feature Description Framework

- Pose Normalization
- Multi-view Information Representation
4.1.3 RoPS Feature Descriptor

Part 2 - Local Surface Description

- (a) Object
- (b) Local surface Q'
- (c) Rotated surface $Q'(\theta_k)$
- (d) Projection
- (e) Distribution matrix D
- (f) Statistics $\{\mu_{mn}, e\}$
- (g) Sub-feature $f_x(\theta_k)$
4.1.3 RoPS Feature Descriptor

Part 2 - Local Surface Description

\[\mu_{mn} = \sum_{i=1}^{L} \sum_{j=1}^{L} (i - \bar{i})^m (j - \bar{j})^n \mathbf{D}(i, j) \]

\[e = -\sum_{i=1}^{L} \sum_{j=1}^{L} \mathbf{D}(i, j) \log(\mathbf{D}(i, j)) \]

\[f = \{ f_x(\theta_k), f_y(\theta_k), f_z(\theta_k) \}, \quad k = 1, 2, \ldots, T \]

1. $\mu_{02}, \mu_{11}, \mu_{20}$
2. $\mu_{02}, \mu_{11}, \mu_{20}, \mu_{03}, \mu_{12}, \mu_{21}, \mu_{30}$
3. $\mu_{02}, \mu_{11}, \mu_{20}, \mu_{03}, \mu_{12}, \mu_{21}, \mu_{30}, \mu_{04}, \mu_{13}, \mu_{22}, \mu_{31}, \mu_{40}$
4. $\mu_{02}, \mu_{11}, \mu_{20}, \mu_{03}, \mu_{12}, \mu_{21}, \mu_{30}, \mu_{04}, \mu_{13}, \mu_{22}, \mu_{31}, \mu_{40}, e$
5. $\mu_{11}, \mu_{21}, \mu_{12}, \mu_{22}$
6. $\mu_{11}, \mu_{21}, \mu_{12}, \mu_{22}, e$
7. $\mu_{11}, \mu_{21}, \mu_{12}, \mu_{22}, \mu_{31}, \mu_{13}$
8. $\mu_{11}, \mu_{21}, \mu_{12}, \mu_{22}, \mu_{31}, \mu_{13}, e$
4.1.4 Why RoPS Works?

Intuitive Justification

- **Descriptiveness**
 - Encode the “complete” information of the local surface from various viewpoints through rotation

- **Invariance**
 - The unambiguous and stable LRF

- **Robustness to Noise**
 - Low-order statistics (moments) of the distribution matrices

- **Robustness to Varying Mesh Resolutions:**
 - The 2D projection planes are sparsely partitioned
 - Its LRF is derived by calculating the scatter matrix of all the points lying on the local surface rather than just the vertices

- **Compactness**
 - Projection: 3D -> 2D
 - Statistics: 2D matrix -> 1D vector
4.1.5 Performance (Bologna Dataset)

Robustness to Noise

- Noise free
- Noise std 0.1mr
- Noise std 0.3mr
- Noise std 0.5mr
4.1.5 Performance (Bologna Dataset)

Robustness to Varying Mesh Resolution

Decimation 1/2

Decimation 1/4

Decimation 1/8

Noise std 0.1mr & decimation 1/2
4.1.6 Performance (PHOTOMESH Dataset)

RoPS

<table>
<thead>
<tr>
<th>Transform</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Color noise</td>
<td>0.00</td>
</tr>
<tr>
<td>Color shot noise</td>
<td>0.00</td>
</tr>
<tr>
<td>Geometry noise</td>
<td>0.01</td>
</tr>
<tr>
<td>Geometry shot noise</td>
<td>0.01</td>
</tr>
<tr>
<td>Rotation</td>
<td>0.00</td>
</tr>
<tr>
<td>Scale</td>
<td>0.00</td>
</tr>
<tr>
<td>Local scale</td>
<td>0.01</td>
</tr>
<tr>
<td>Sampling</td>
<td>0.01</td>
</tr>
<tr>
<td>Holes</td>
<td>0.01</td>
</tr>
<tr>
<td>Marco-holes</td>
<td>0.00</td>
</tr>
<tr>
<td>Topology</td>
<td>0.01</td>
</tr>
<tr>
<td>Isometry + noise</td>
<td>0.02</td>
</tr>
<tr>
<td>Average</td>
<td>0.00</td>
</tr>
</tbody>
</table>

MeshHOG (IJCV 2012)

<table>
<thead>
<tr>
<th>Transform</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Color noise</td>
<td>0.00</td>
</tr>
<tr>
<td>Color shot noise</td>
<td>0.00</td>
</tr>
<tr>
<td>Geometry noise</td>
<td>0.07</td>
</tr>
<tr>
<td>Geometry shot noise</td>
<td>0.02</td>
</tr>
<tr>
<td>Rotation</td>
<td>0.00</td>
</tr>
<tr>
<td>Scale</td>
<td>0.00</td>
</tr>
<tr>
<td>Local scale</td>
<td>0.06</td>
</tr>
<tr>
<td>Sampling</td>
<td>0.10</td>
</tr>
<tr>
<td>Holes</td>
<td>0.01</td>
</tr>
<tr>
<td>Marco-holes</td>
<td>0.01</td>
</tr>
<tr>
<td>Topology</td>
<td>0.07</td>
</tr>
<tr>
<td>Isometry + noise</td>
<td>0.08</td>
</tr>
<tr>
<td>Average</td>
<td>0.04</td>
</tr>
</tbody>
</table>
4.1.7 Applications

3D Object Recognition

3D Modeling

(a) Input Meshes
(b) Shape Growing
(c) Multi-view Registration
(d) 3D Models
1. Introduction

2. 3D Keypoint Detectors

3. 3D Local Feature Descriptors

4. Our Contributions
 4.1 RoPS: A Distinctive and Robust Feature Descriptor for 3D Local Surface Representation
 4.2 ARS: An Efficient Feature Descriptor for 3D Face Representation

5. Conclusion
4.2.1 Motivation

Motivation

- Many existing 3D face recognition approaches are very time consuming
 - They rely on surface registration (e.g., ICP) or complex feature matching
- 3D face recognition accuracy is highly challenged by expression variations.

Our Goal

- Design a 3D local feature descriptor which is highly descriptive, efficient, and robust to facial expressions.
4.2.2 Angular Radial Signature

Stage 1 - ARS Feature Generation

- ARS features are generated for each face
- Mask is used for fast computation
4.2.2 Angular Radial Signature

Stage 2 - KPCA Mapping

- KPCAs are trained to transform the ARSs to mid-level feature representations
- Address the linearly inseparable problem by transforming the ARSs to a high-dimensional nonlinear space
- All mid-level features are concatenated into a single feature. Multiple KPCA models results in a more discriminative mapping
- Polynomial, sigmoid, radial basis function

\[
X = [x_1 \ldots x_M] \in \mathbb{R}^{D \times M} \\
K_{ij} = k(x_i, x_j) = (\varphi(x_i) \cdot \varphi(x_j)), \quad i, j = 1 \ldots M \\
\varphi : \mathbb{R}^D \to \mathbb{F} \\
M \varphi A = K a
\]
4.2.3 Face Recognition Algorithm

Stage 2 - SVM Classification

- Mid-level features are combined to a final feature vector and fed into an SVM for face recognition

 \[
 \min_{w,b,\xi} \left(\frac{1}{2} w^T w + C \sum_{i=1}^{l} \xi_i \right)
 \]

 s.t. \quad y_i(w^T \varphi(x_i) + b) \geq 1 - \xi_i

- Linear kernel based SVM is used

 - ARS features have already been non-linearly mapped using KPCA

 - Linear kernel does not require any parameter selection
4.2.4 Experimental Results

Face Identification Task

- (a) CMC on FRGC v2.0 dataset: R1-IR 93.4%
- (b) CMC on SHREC2008 dataset: R1-IR 90.7%
4.2.4 Experimental Results

Face Verification Task

- (a) ROC on FRGC v2.0 dataset: VR@0.1\%FAR 97.8\%
- (b) ROC on SHREC2008 dataset: VR@0.1\%FAR 88.5\%
4.2.4 Experimental Results

Computational Efficiency

- Implemented in Matlab and C++
- Tested on a PC with an Intel Core2 Quad CPU and 8GB RAM

<table>
<thead>
<tr>
<th>Step</th>
<th>Number of faces</th>
<th>Individuals</th>
<th>Time cost (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face normalization</td>
<td>1</td>
<td>1</td>
<td>0.28</td>
</tr>
<tr>
<td>ARSs extraction</td>
<td></td>
<td></td>
<td>0.034</td>
</tr>
<tr>
<td>Training</td>
<td>2410</td>
<td>466</td>
<td>16.8</td>
</tr>
<tr>
<td>SVM</td>
<td></td>
<td></td>
<td>6.5</td>
</tr>
<tr>
<td>KPCA</td>
<td></td>
<td></td>
<td>0.67</td>
</tr>
<tr>
<td>Testing</td>
<td>1597</td>
<td></td>
<td>5.4</td>
</tr>
</tbody>
</table>

- Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>Time</th>
<th>Method</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kakadiaris et al.</td>
<td>744.2s</td>
<td>Mian et al.</td>
<td>6388s</td>
</tr>
<tr>
<td>Faltemier</td>
<td>1,711,664.6s</td>
<td>Wang et al.</td>
<td>1054s</td>
</tr>
<tr>
<td>Ballihi et al.</td>
<td>506,057.4s</td>
<td>The proposed</td>
<td>6.07s</td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. 3D Keypoint Detectors
3. 3D Local Feature Descriptors
4. Our Contributions
 4.1 RoPS: A Distinctive and Robust Feature Descriptor for 3D Local Surface Representation
 4.2 ARS: An Efficient Feature Descriptor for 3D Face Representation
5. Conclusion
Conclusion

We Proposed

- RoPS: A highly distinctive and robust feature descriptor for 3D local surface representation
- ARS: A highly efficient feature descriptor for 3D face representation

Open Issues

- Feature extraction by the fusion of photometric and geometric information
- Feature extraction via machine learning (deep learning)
- Lightweight 3D local features
Collaborators

Y. Guo @ NUDT
M. Bennamoun @ UWA
Y. Lei @ SCU
M. Lu @ NUDT
J. Wan @ NUDT
F. Sohel @ UWA
Thank You

Email: yulan.guo (AT) nudt.edu.cn